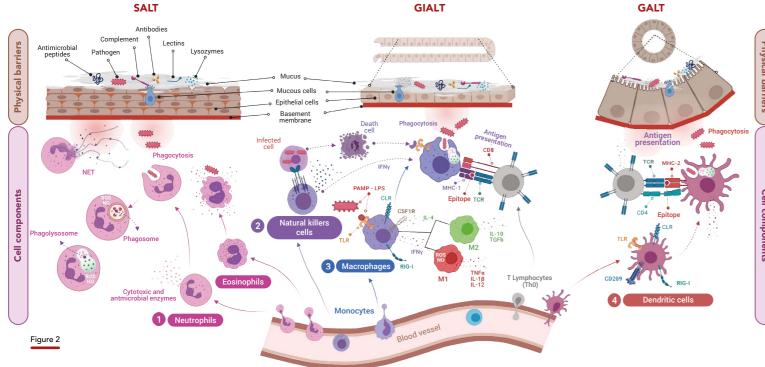
Cellular innate immune response

The fish immune system is made up of two subsystems: innate and adaptive. The innate immune system is the first one to respond again pathogens and does not retain memory of previous responses. If the pathogen persists, the adaptive immune system is activated and with a specific remembered response. Activation of immune response is called "immunostimulation" or "immunomodulation", but the term "trained innate immunity" has begun to be used to explain the stimulation of the innate immune defense that can confer greater nonspecific resistance to pathogen infections. Innate immune system considers three defense mechanisms: (1) physical barriers (Figure 1), (2) cellular components (Figures 2, 3, 4 y 5) y (3) humoral responses (next data sheet).

Physical barriers

Innate immune system first line defenses are Figure 1 physical barriers that prevent the entry of pathogens: skin, gills and gastrointestinal tract (Figure 1)

Skin: Teleost skin contains skin-associated lymphoid tissue (SALT) that consists of multiple cell types, including mucosal cells, B and T lymphocytes, granulocytes, macrophages, and a dendritic cell type called Langerhans-like cells. Skin has the ability to secrete mucus that acts as a physical and chemical barrier to trap and neutralize pathogens; it contains lectins, lysozymes, complement proteins and antimicrobial peptides.

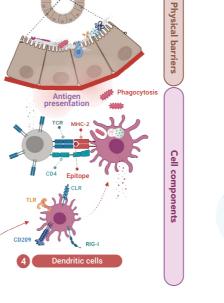

(a) Skin associated lymphoid tissue (SALT) (b) Gill associated lymphoid tissue (GIALT) (0) Gut associated lymphoid tissue (GALT)

Gills: Participate in osmotic balance and gas exchange. In addition, gills are also an important physical barrier composed of a layer of epithelial cells, a layer of glycocalyx, and a layer of mucus. Macrophages, neutrophils, eosinophilic granulocytes, and B and T cells are some of the cells that are in the gills (GIALT).

Gastrointestinal Tract (GI): GI tract facilitates the absorption of nutrients and through its epithelium prevents invasion of pathogens. Gut associated lymphoid tissue (GALT) is found in teleosts as a diffuse network of myeloid and lymphoid cells without major organization. Macrophages, eosinophilic granule cells, dendritic cells, B and T cells are seen in the posterior segment of the intestine

Cell components

If the pathogen manages to cross physical barriers, it will encounter the cellular and humoral components of the innate immune system. Cellular components include: eosinophilic and neutrophil granule cells, monocytes/macrophages, dendritic cells (DC), and natural killer (NK) cells (Figure 2). When an innate cell encounters a pathogen, it will recognize a pathogen-associated molecular pattern (PAMP) and will be activated to participate in various responses such as: pathogen phagocytosis and destruction, cytosines production and adaptive immune system activation through antigen presentation (Figure 2).


Neutrophils: Along with monocytes/macrophages, these are the firsts cells to arrive and respond to infection. Neutrophils show antimicrobial response through intracellular and extracellular mechanisms, including cytotoxic and antimicrobial enzymes granule release, neutrophil extracellular traps (NET) release, phagocytosis, and reactive oxygen species (ROS) and nitric oxide (NO) production (Figure 2).

Author Dr. Marco Rozas Serri

pathovet,

Natural Killer (NK): A third type of lymphocytes (plus B and T lymphocytes). Belonging to innate and adaptive branches of the immune system, main cytotoxic cells in fish are NK and cytotoxic T lymphocytes (CTL), respectively. NK cells can innately recognize infected cells and become activated to destroy them (Figure 4A), whereas CTLs require MHC class I-mediated induction. NKs also recognize and kill cells coated by antibodies or marked as infected to be attacked (Figure 4B). Active NKs secrete TNF-a interferon gamma (IFNy), and/or granulocyte-monocyte colony-stimulating factor (GM-CSF), all important cytosines in the proliferation, differentiation, and activation of other immune cells.

TROS / NO produce natory cytosine productio

Monocytes/Macrophages: Macrophages derive from circulating monocytes and their differentiation is controlled by

colony stimulating factor receptor

(CSF1R). Macrophages activated by

classical pathway (M1) are characterized by production of pro-inflammatory

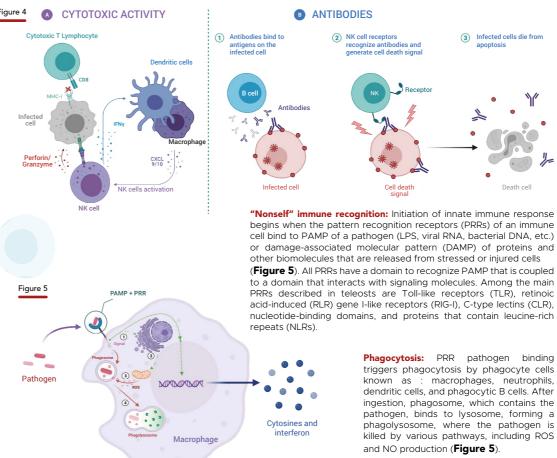
cvtokines such as tumor necrosis factor

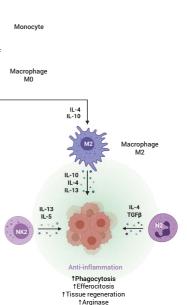
(TNF) and interleukin 1 beta (IL-1), in addition to ROS and NO production

(Figure 3). Macrophages activated by

alternative pathway (M2) are associated

with immunosuppression, tissue repair,


and elevated levels of arginase and


anti-inflammatory cytokines such as IL-10

(Figure 3). The best characterized

macrophage phenotype in teleost fish is

found in M1 macrophages.

Patented product

-uterpeno

Achieves active levels of CD8+ tor an effective immune response against pathogens and management

www.futerpenol.com